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Distribution of eigenvalues of ensembles of asymmetrically
diluted Hopfield matrices

D A Stariolo, E M F Curado† and F A Tamarit‡
Centro Brasileiro de Pesquisas Fı́sicas/CNPq, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro-
RJ, Brazil

Received 6 December 1996

Abstract. Using Grassmann variables and an analogy with two-dimensional electrostatics, we
obtain the average eigenvalue distributionρ(ω) of ensembles ofN × N asymmetrically diluted
Hopfield matrices in the limitN → ∞. We found that in the limit of strong dilution the
distribution is uniform in a circle in the complex plane.

Random matrix theory has become an active field of research in mathematics and physics in
the last few decades. In physics, since the now classic work of Metha [1] on the statistical
description of the energy levels of atomic nuclei, random matrices have emerged as an
important tool in the study of the localization transition [2, 3], quantum chaos [4], spin
glasses [5], neural networks [6], and disordered systems in general. Most of the work
deals with ensembles of Hermitian or symmetric matrices whose individual properties are
well known and can be exploited in more complex situations. The last few years have
seen growing interest in the properties of ensembles ofasymmetricmatrices. The so-called
‘circular law’ for the distribution of eigenvalues of asymmetric matrices with independent
entries was first obtained by Girko [7]. For example, in dynamical theories of non-symmetric
spin glasses, the distribution of eigenvalues of the interaction matrix is of fundamental
importance in the determination of the different phases of the system. It is found that the
presence of asymmetry effects can destroy spin glass freezing [8]. In the modelling of
neural networks, asymmetry of the synaptic matrix is a biologically appealing characteristic
[6]. In models based onanalogueneurons, which are somewhat more realistic than discrete
ones, the properties of the eigenvalues of the synaptic matrix determine the stability of the
attractors of the dynamics. In [9, 10] this analysis is carried out for symmetric matrices. The
extension for asymmetric matrices is still an open and interesting problem. Asymmetry of
the synaptic matrix is known to be responsible for complex dynamical behaviour in models
of neural networks. For example in [11] it is shown how chaotic behaviour can appear
in an asymmetric network. In [12] chaotic dynamics is found in a model neural network
with analogue neurons. The eigenvalue spectrum of asymmetric matrices has also been
considered in problems of learning in perceptron-like neural networks [13]. More recently,
the study of eigenvalue distributions of asymmetric matrices has also been motivated by
the appearance of quantum chaos in scattering processes [15]. In a recent paper Lehmann
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et al develop a new version of the general supersymmetric method for studying disordered
systems [16].

In an important contribution, Sommerset al [17] calculated the average density of
eigenvaluesρ(ω) of N × N random asymmetric matrices in the limitN → ∞, with
elementsJij , given by a Gaussian distribution with zero mean and correlations

N〈〈J 2
ij 〉〉J = 1 N〈〈JijJji〉〉J = τ. (1)

They found that the eigenvalues are uniformly distributed inside an ellipse in the complex
plane, whose semi axes depend on the degree of asymmetry of the ensembleτ . Generalizing
this result, Lehmannet al [18] calculated the joint probability distribution of eigenvalues
in Gaussian ensembles of real asymmetric matrices, recovering the elliptic law in the large
N limit.

Motivated in neural network theory, in this paper we calculate the average eigenvalue
distribution ρ(λ) of an ensemble of asymmetrically diluted Hopfield matrices, whose
elements are given by

Jij = cij

N

p∑
µ=1

ξ
µ

i ξ
µ

j i, j = 1, . . . , N (2)

where{ξµ

i i = 1, . . . , N, µ = 1, . . . , p} represents a set ofp random patterns. Theξµ

i are
random independent variables that can take the values±1 with the same probability and
the cij are random independent variables chosen according to the following distribution:

P(cij ) = γ δ(cij − 1) + (1 − γ )δ(cij ). (3)

0 6 γ 6 1 measures the degree of dilution of the matrices. Note that, thecij being
independent, the resulting matrices are asymmetric.γ = 1 corresponds to symmetric
Hopfield matrices whose eigenvalue distribution is known [8, 18]. In [19] the spectral
properties of a broad class of symmetric matrices are studied, of which Hopfield’s matrices
are a particular instance.

In order to obtain the distributionρ(ω) we use an analogy with a two-dimensional
electrostatic problem introduced in [17]. Let us define the Green function associated with
the matrixJ

G(ω) = 1

N

〈〈
Tr

1

Iω − J

〉〉
J

(4)

where ω = x + iy is a complex variable,I the identity matrix and〈〈· · ·〉〉J denotes an
average over the random variablesξ

µ

i . If λi , i = 1, . . . , N are the eigenvalues ofJ , then

Tr
1

Iω − J
=

N∑
i

1

ω − λi

. (5)

For largeN the sum can be approximated by an integral and the Green function becomes

G(ω) =
∫

d2λ
ρ(λ)

ω − λ
(6)

whereρ(λ) is the density of eigenvalues in the plane. The last equation suggests an analogy
with a two-dimensional classical electrostatics problem in whichρ(λ) represents the density
of charge in the plane. It can be demonstrated [17] that an electrostatic potential8 exists,
satisfying

2 ReG = −∂8

∂x
− 2 ImG = −∂8

∂y
(7)
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and which obeys Poisson’s equation:

∇28 = −4πρ. (8)

Thus, in order to determineρ(ω) we may calculate the potential8. Using that det(AB) =
detA detB and detAT = detA one can prove that a good definition for8 can be

8(ω) = −1/N〈〈ln det((Iω∗ − J T)(Iω − J ))〉〉J (9)

with ω∗ the complex conjugate ofω andJ T the transpose ofJ . In what follows we will
consider the caseN → ∞ and assume that in this limit the average and the ln operations
commute [17]. By using a Grassmannian representation† of the determinant and adding a
matrix εδij , with ε positive and infinitesimal in order to avoid zero eigenvalues, we get

exp[−N8(ω)] =
〈〈∫ ∞

−∞

( N∏
i=1

dη∗
i dηi

)
× exp

{
−

∑
i,j,k

η∗
i (ω

∗δik − J T
ik)(ωδkj − Jkj )ηj − ε

∑
i

η∗
i ηiBigr}

〉〉
J

. (10)

After performing the average over thecij and over the random patterns{ξµ

i }, we arrive at
the following expression

exp[−N8(ω)] =
∫ ∞

−∞

( N∏
i=1

dηi dη∗
i

)
× exp{(ε + |ω|2)Nq − αN ln t + αγ (ω + ω∗)Nq − αγ (1 − γ )|ω|2Nq2}

×
∫ +∞

−∞

( N∏
i=1

dχ∗
i dχi

)
exp

{
−

∑
i

χ∗
i χi [1 + αγ (1 − γ )q]

+
∑

i

χ∗
i ηi [αγ − αγ (1 − γ )ωq] +

∑
i

η∗
i χi [αγ − αγ (1 − γ )ω∗q]

}
× expαN ln

{
1 − γ 2qt

∑
i

χ∗
i χi/N − γ t

(∑
i

χ∗
i ηi +

∑
i

η∗
i χi

)/
N

+γ 2t
(∑

i

η∗
i χ

∗
i

∑
j

ηjχj +
∑

i

η∗
i χi

∑
j

χ∗
j ηj

)/
N2

}
(11)

whereα = p/N is the storage capacity parameter of the theory of Hopfield’s neural networks
and

q = 1

N

∑
i

η∗
i ηi (12)

t = 1

1 − γ

N
(ω + ω∗)

∑
i η

∗
i ηi

(13)

† For a review of Grassmann algebra see [3].
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respectively. Next we define the following parameters:

q = 1

N

N∑
i=1

η∗
i ηi z = 1

N

N∑
i=1

χ∗
i χi

r = 1

N

N∑
i=1

η∗
i χi r∗ = 1

N

N∑
i=1

χ∗
i ηi

s = 1

N

N∑
i=1

η∗
i χ

∗
i s∗ = 1

N

N∑
i=1

ηiχi

(14)

and introduce them into (11) by using delta functions. After integrating over the Grassmann
variables we get

exp[−N8(ω)] =
(

N

2π

)4 ∫ ∞

−∞
dq dQ dz dZ dr dR dr∗ dR∗

× expN

{
qQ + zZ + rR + r∗R∗ + [ε + |ω|2 + αγ (ω + ω∗)]q

+α ln[1 − γ (ω + ω∗)q] + ln(RR∗ − ZQ) − z + αγ (r + r∗)
−αγ (1 − γ )[|ω|2q2 + zq + ωr∗q + ω∗rq]

+α ln

[
1 − γ 2qz

1 − γ (ω + ω∗)q
− γ (r + r∗)

1 − γ (ω + ω∗)q
+ γ 2rr∗

1 − γ (ω + ω∗)q

] }
.

(15)

In the largeN limit this multiple integral can be evaluated by the saddle point method. Up
to now the calculation is exact for arbitraryγ . Since the resulting saddle-point equations
are difficult to solve analytically, in this work we present the results for the strong dilution
limit (γ � 1). Expanding the exponent in powers ofγ and keeping terms up to O(γ ) we
obtain, after some calculations:

exp[−N8(ω)] ∝
∫ +∞

−∞
dq exp−N [ln |q| − (ε + |ω|2)q + αγ |ω|2q2 − ln(1 + αγ q)].

(16)

After a change of variablesσ = 1/q we arrive at the following saddle-point equation:

ε

σ 2
= 1

σ + αγ
− x2

(σ + αγ )2
− y2

(σ + αγ )2
. (17)

Expandingε in powers ofσ , the solution of the saddle-point equation in the limitε → 0
is σ = 0 inside the circlex2 + y2 = αγ . In this regionG(ω) = ω∗/(αγ ) (non-analytic)
and ∇28 = −4/(αγ ). This implies that the density of eigenvalues is uniform inside a
circle of radius

√
αγ in the complex plane. Outside the circle the solution to (17) becomes

σ = x2 + y2 − αγ , the Green function isG(ω) = 1/ω (analytic), and the densityρ = 0.
The density of eigenvalues in the whole complex plane is:

ρ(ω) =
{

1/παγ if x2 + y2 6 αγ

0 otherwise.
(18)

It is important to note that〈〈JijJji〉〉J ∝ γ 2 and consequently, in this limit of strong dilution,
the matrix elements become effectively uncorrelated and we obtain a ‘circular law’ in
accordance with Girko’s results [7]. Our result can also be compared with the similar result
of [17] for the caseτ = 0, i.e. a Gaussian ensemble of completely asymmetric random
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matrices. It is expected that this circle deforms into an ellipse as the asymmetry parameter
γ increases and permits the appearance of random correlations between the patterns.
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Figure 1. Projection of the eigenvalue distribution
on the real axis. The full curve correspond to the
analytical results and the histogram to the numerical
diagonalization performed withγ = 0.01, α = 0.25
and N = 512 and averaged over 20 realizations of
the matrices.
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Figure 2. The same as figure 1 withN = 1024 and
averaged over 10 realizations of the matrices.

In figures 1–3 we show the results of numerical diagonalization of sets ofN × N

matrices, with linear sizesN ranging from 512 to 2048 forα = 0.25 andγ = 0.01. The
figures show the projection of the distribution of complex eigenvalues in the real axis. The
full curves represent the analytical solution:

ρx =
∫

ρ(x, y) dy

= 2

παγ
(αγ − x2)1/2 |x| 6 √

αγ . (19)

We found that the numerical results present a peak at the origin that becomes smaller as the
size N increases. Assuming that it is a finite size effect, and that the weight of the peak
might be uniformly distributed on the whole support of the distribution, we renormalized
the distributions. After renormalizing the numerical data the agreement with the analytic
curves becomes very good as the size increases. Figure 4 shows the dependence of the peak
at the origin with the system size. We have fitted the data at the origin with an exponential



4738 D A Stariolo et al

–0.06 –0.03 0.00 0.03 0.06
0

5

10

15

20

25

Figure 3. The same as the previous figures with
N = 2048 averaged over eight realizations of the
matrices.
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Figure 4. Finite size scaling of the peak
at the origin in the complex plane lnρ(0)

versus 1/N .

function in 1/N , ρx(0) = a exp(b/N). The extrapolation toN → ∞ coincides with an
error of 10% with the analytic result at the origin.

To conclude, in this paper we have obtained analytically the distribution of eigenvalues
of an ensemble of asymmetrically diluted Hopfield matrices in the limit of strong dilution.
This limit is of particular importance because it represents a whole class of problems in
which the dynamics can be solved analytically due to the absence of correlations between
different sites in the network (see for example [20] and references therein). The eigenvalues
are uniformly distributed inside a circle in the complex plane. Our results are supported
by numerical diagonalization of the ensemble considered. Although we presented only the
results for the strong dilution limit, the saddle-point equations are valid for any amount of
dilution and their general solution would be welcome.
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